正确的提示信息
扫码打开虎嗅APP
从思考到创造
打开APP
资讯
视频
前沿科技
车与出行
商业消费
社会文化
金融财经
出海
国际热点
游戏娱乐
健康
书影音
医疗
3C数码
观点
其他
虎嗅视界
24小时
专题/活动
虎嗅智库
登录
极速注册
取消
搜索历史
删除
完成
全部删除
数码
互联网
数码
互联网
热搜词
OpenAI
AI
俄乌冲突
奢侈品
婚纱
投资
创投
贫困
科技创新
账号或密码错误
2014-04-18 07:23
详细解读欧洲人脑计划
iCombinator
作者注:
欧盟人脑计划于2013年入选了欧盟的未来旗舰技术项目,获得了10亿欧元的资金支持,也成为了全球范围内最重要的人类大脑研究项目。目前对于人类大脑研究的重要性和意义已无需赘述,国内对人工智能和神经认知的讨论也日益增多,但却非常浅显,关于欧盟人脑计划的介绍仅是几篇简短的新闻稿,而“百度大脑”的出现也只是吸引了一下眼球而已。因此,笔者想通过对欧盟人脑计划的详细描述为关注这个领域的研究机构、互联网公司和爱好者提供一些有实际意义的参考和灵感。同时,也想让大家感觉一下,当我们还在把“最强大脑”当娱乐时,国外对人脑研究的重视和执行已经到了何种程度。或许在将来我们依然能看到那个熟悉的画面:我们一边在流水线上加工着廉价的大脑硬件,一边幸福的谈论着国外的人脑技术是如何超乎想象和令人兴奋。就像我们今天谈论计算机、互联网和iPhone一样。
理解人类大脑是21世纪科学领域最重大的挑战之一。如果我们能对此良好应对,则可以更好的洞悉大脑原理,研发新的大脑疾病的治疗方法,并能建立一套全新的、革命性的信息通信技术(Information and Communications Technologies ,以下简称ICT)。
本文节选自HBP(人脑计划,Human Brain Project,以下简称HBP)执行报告,其认为,信息通信技术和生物学的融合已经到达了一个奇点——它可以将我们一直梦寐以求的掌握人类大脑变为现实。正是这种可行性促使研究者发起HBP的预研究项目(HBP-PS),预研究由欧盟资助,为期一年,300多名来自神经认知学、医学和计算科学的专家集聚一堂来开发一种新的ICT以便更好的研究大脑并在此基础上开展各种应用。2013年,该项目入选了欧盟的未来旗舰技术项目(Future & Emerging Technologies,以下简称FET,另一个项目是石墨烯),将从欧盟委员会获得10亿欧元资金支持,为期十年。
一、项目背景和综述
研究者发现在大脑研究过程中我们一直以来面临的最大障碍是各项大脑研究工作及产生数据的碎片化。当今的神经认知学领域的研究非常富有成效但缺乏系统性。它得到的众多数据描述了大脑众多区域内不同生理组织的不同层次,而这些研究样本又来自于不同发育阶段的不同物种。现阶段,研究者迫切需要将这些数据进行整合,以更好的展示出各部分如何组合并形成统一的、多层次的研究体系。
生物学和信息通信技术的不断融合给了我们实现这个伟大目标的机会。新的基因测序和成像技术、新的显微镜观测技术使我们观测大脑的方式发生了彻底改变。借助互联网和云计算,我们可以轻易的将分布在世界各地的研究机构和医疗机构的数据进行高效整合。神经信息学为我们提供了更先进的数据分析方法,帮助我们构建无比详尽的大脑图谱并进行共享,鉴定别我们各自的知识缺陷和盲点,并在实验数据缺失时通过技术手段对参数值进行预测。而对于大脑庞大且复杂的生理细节,超级计算机的出现也使得建立和模拟各种大脑模型成为可能。
这些技术将加速我们对大脑的理解,也能在另外两个领域给与我们启发,一是针对大脑疾病全新预防和治疗方式;二是能够变革产业、经济和社会的更为先进的计算技术。
二、大脑研究的新基础
HBP追求四大目标,每一个目标都是以现有工作为基础,并成为下一步研究的触发点。
1、数据
采集筛选过的、必要的战略数据来绘制人脑图谱并设计人脑模型,同时吸引项目外的研究机构来贡献数据。
当今的神经认知学已经积累了海量实验数据,大量原创研究带来了层出不穷的新发现。即便如此,构建多层次大脑图谱和统一的大脑模型所需的绝大部分核心知识依然缺失。因此,HBP的首要任务是采集和描述筛选过的、有价值的战略数据,而不是进行漫无目的的搜寻。HBP-PS定义了数据研究的三个重点:
1)老鼠大脑的多层级结构。此前研究表明,对老鼠大脑的研究成果同样适用于所有的哺乳类动物。因此,对老鼠大脑组织的不同层级间关系的系统研究将会为人脑图谱和模型提供关键参考。
2)人脑的多层级结构。老鼠大脑的研究数据在一定程度上可以为人脑研究提供重要参考,但显然两者存在根本区别。为了定义和解释这些区别,HBP的研究团队应采集关于人类大脑的战略数据,并尽可能积累到已有的老鼠大脑数据的规模,便于对比。
3)人脑功能和神经元结构。弄清大脑结构和大脑功能之间的联系是HBP的重要目标之一。HBP会把三分之一的研究重点放在负责具体认知和行为技能的神经元结构上,从其他非人类物种同样具备的简单行为一直到人类特有的高级技能(例如语言)。
2、理论
定义数学模型,解释不同大脑组织层级与它们在实现信息获取、信息描述和信息储存功能之间的内在关系。
如果缺乏统一、可靠的理论基础,我们很难解决神经科学在数据和研究方面碎片化的问题。因此,HBP应包含一个专注于研究数学原理和模型的理论研究协调机构,这些模型用来解释大脑不同组织层级与它们在实现信息获取、信息描述和信息储存功能之间的内在关系。作为这个协调机构的一部分,HBP应建立一个开放的“欧洲理论神经科学研究机构”(European Institute for Theoretical Neuroscience),以吸引更多项目外的优秀科学家参与其中,并充当创新性研究的孵化器。
3、ICT平台
建立一套综合的ICT平台系统,为神经认知学家、临床研究者和技术开发者提供服务以提高研究效率。
HBP的第三个目标是建立一个汇集多个ICT平台的统一技术系统,其具备充分的技术潜力来应对一种全新的基于ICT的人脑研究任务。我们建议组建六大平台,神经信息系统、人脑模拟系统、医疗信息系统、高性能计算系统、神经形态计算系统和神经机器人学系统。
1)神经信息系统。HBP的神经信息平台将为神经科学家提供有效的技术手段,使他们更加容易的对人脑结构和功能数据进行分析,并为绘制人脑的多层级图谱指明方向。此平台还包含神经预测信息学的各种工具,这有助于对描述大脑组织不同层级间的数据进行分析并发现其中的统计性规律,也有助于对某些参数值进行估计,而这些值很难通过自然实验得出。在此前的研究中,数据和知识的缺乏往往成为我们系统认识大脑的一个重要障碍,而上述技术工具的出现使这一难题迎刃而解。
2)人脑模拟系统。HBP会建立一个足够规模的人脑模拟平台,旨在建立和模拟多层次、多维度的人脑模型,以应对各种具体问题。该平台将在整个项目中发挥核心作用,为研究者提供建模工具、工作流和模拟器,帮助他们从老鼠和人类的大脑模型中汇总出大量且多样的数据来进行动态模拟。这使“计算机模拟实验”成为可能,而在只能进行自然实验的传统实验室中是无法做到这一点的。借助平台上的各种工具可以生成各种输入值,而这些输入值对于HBP中的医学研究(疾病模型和药物效果模型)、神经形态计算(应用于神经形态硬件的大脑模型)、神经机器人研究(应用于具体认知和行为任务的神经回路模型)至关重要。
3)高性能计算系统。HBP的超级计算平台将为建立和模拟人脑模型提供足够的计算能力。其不仅拥有先进的百亿亿次级超级计算技术,还具备全新的交互计算和和可视化性能。
4)医疗信息系统。HBP的医疗信息系统需要汇集来自医院档案和私人数据库的临床数据(以严格保护病人信息安全为前提)。这些功能有助于研究者定义出疾病在各阶段的“生物签名”,从而找到关键突破点。一旦研究者拥有了客观的、有生物学基础的疾病探测和分类方法,他们将更容易找到疾病的根本起源,并相应的研发出有效治疗方案。
5)神经形态计算系统。HBP的神经形态计算平台将为研究者和应用开发者提供他们所需的硬件和设计工具来帮助他们进行系统开发,同时还会提供基于大脑建模多种设备及软件原型。借助此平台,开发者能够开发出许多紧凑的、低功耗的设备和系统,而这些正在逐渐接近人类智能。
6)神经机器人系统。HBP的神经机器人平台为研究者提供开发工具和工作流,使他们可以将精细的人脑模型连接到虚拟环境中的模拟身体上,而以前他们只能依靠人类和动物的自然实验来获取研究结论。该系统为神经认知学家提供了一种全新的研究策略,帮助他们洞悉隐藏在行为之下的大脑的各种多层级的运作原理。从技术角度来说,该平台也将为开发者提供必备的开发工具,帮助他们开发一些有接近人类潜质的机器人,而以往的此类研究由于缺乏这个“类大脑”化的中央控制器,这个目标根本无法实现。
4、应用
HBP的第四个主要目标是可以成功的体现出为神经认知学基础研究、临床科研和技术开发带来的各种实用价值。
——统一的知识体系原则。本项目中的“人脑模拟系统”和“神经机器人系统”会对负责具体行为的神经回路进行详尽解释,研究者可利用它们来实施具体应用,例如模拟基因缺陷的影响、分析大脑不同层级组织细胞减少的后果,建立药物效果评价模型。并最终得到一个可以将人类与动物从本质上区分开来的人脑模型,例如,该模型可以表现出人类的语言能力。这些模型将使我们对大脑的认识发生质的变化,并且可以立即应用于具体的医疗和技术开发领域。
——对大脑疾病的认识、诊断和治疗。研究者可充分使用医疗信息系统、神经形态计算系统和人脑模拟系统来发现各种疾病演变过程中的生物签名,并对这些过程进行深入分析和模拟,最终得出新的疾病预防和治疗方案。这项工作将充分体现出HBP项目的实用价值。新诊断技术在疾病还未造成不可逆的危害前,就能提前对其进行诊断,并针对每位患者的实际情况研发相应的药物和治疗方案,实现“个人定制医疗”,这将最终有利于患者治疗并降低医疗成本。对疾病更好的了解和诊断也会优化药物研发进程,更好的筛选药物测试候选人和临床测试候选人,这无疑有益于提高后期的实验成功率,降低新药研发成本(目前每种药物的研发成本约10亿欧元)。
——未来计算技术。研究者可以利用HBP的高性能计算系统、神经形态计算系统和神经机器人平台来开发新兴的计算技术和应用。高性能计算平台将会为他们配备超级计算资源,以及集成了多种神经形态学工具的混合技术。借助神经形态计算系统和神经机器人平台,研究者打造出极具市场应用潜力的软件原型。这些原型包括家庭机器人,制造机器人和服务机器人,它们虽然看起来不显眼,但却具备强大的技术能力,包括数据挖掘、机动控制、、视频处理和成像以及信息通信等。
三、社会伦理
考虑到HBP的研究和技术带来的巨大影响,该项目会组建一个重要的社会伦理小组,来资助针对HBP项目对社会和经济造成的潜在影响的学术研究,该小组会在伦理观念上影响HBP研究人员,管理和提升他们的伦理道德水平和社会责任感,其首要任务是在具有不同方法论和价值观的利益相关者和社会团体之间展开积极对话。
四、项目的三大阶段
HBP将持续十年,分为三个重要阶段。
最初两年半(“ramp-up” phase,上升期),HBP将专注于ICT平台初始版本的建立,并为该平台收集筛选过的战略数据。此阶段结束时,ICT平台能够为本项目及项目外的研究者所正常使用。
接下来四年半(“operational phase”,运营期),项目会加强战略数据的收集以及平台新功能的补充,同时也会积极展示该ICT平台在神经人认知学的基础研究、医疗应用和未来计算技术方面的重大价值。
最后三年(“sustainability phase”,稳定期),项目会继续上个阶段的工作并努力实现自负盈亏——让这个平台上创造出来的功能和知识成为欧洲科学研究和产业发展的永久性资产。
五、成本
估计HBP的整体投资将接近11.9亿欧元,其中第一阶段需要8000万欧元,第二阶段需要6.73亿欧元,第三阶段需要4.37亿欧元。
六、HBP的管理和经营
HBP将是一个持续十年的庞大的跨学科的研究项目,包含了来自二十多个国家的合作方,且耗资巨大。因此,我们经营管理机制必须具备强大且灵活的领导力,保证ICT平台真正变成一个共同体资源来共享和合作。HBP合作方建立监督机制,各类监督活动也会贯穿项目始终。希望接入ICT平台的研究项目必须经过完备的竞争和筛选过程,而且此过程会向全球科学界进行公开。
七、HBP的影响
HBP将极大加速人类对人脑结构和功能的全面理解,有助于人类更好的研究大脑疾病并发现更加优化的治疗方案,也会帮助人类开发基于人脑机理的革命性的信息通信技术。
从对科学研究的影响来说,HBP收集的数据以及ICT提供的各种技术手段将帮助我们克服之前神经科学研究碎片化的问题,为我们深入了解大脑结构和功能之间的关系提供了全新的视角。该项目将使研究者有机会解开当今神经认知领域的诸多研究难题,包括大脑的学习和记忆,神经编码原理,甚至是人类感觉和意识的神经原理。
HBP也会给医学带来重大影响,加速新诊断工具和治疗方式的研发。考虑到大脑疾病的高额成本,即使很小的进步也会产生巨大的经济效益和社会效益。降低药物研发成本、提高药物成功率也会使制药产业获益良多。核心模型和技术由欧洲研究者和机构开发出来,这将极大提高欧洲制药产业在全球脑部疾病新药领域的竞争优势,而该领域的市场潜力巨大。
通过将大脑研究整合至ICT平台,HBP将有足够的话语权来决定计算机技术的未来发展方向。项目中用到的超级计算、人机交互和可视化、全方位模拟和云计算等技术会更多的为产业和消费者服务,开始一个良性循环,需求增长导致规模效应和成本下降,而成本的下降会进一步刺激需求,使超级计算机等技术能够更加广泛的应用于产业界和学术界。这些功能需要先进的软件支持,而欧洲在这方面拥有强大的竞争优势。
HBP在神经形态计算和神经机器人学方面的研究工作会促使低功耗系统加速发展,以逐渐接近人类水平。虽然这些技术不会取代过去50年驱动欧洲发展的传统计算机技术,但它们深具潜力的应用范围和战略意义也同样重要。HBP如果可以在此领域占据领先地位,则将会对保持欧洲在世界经济中的竞争地位起到关键作用。
微信公众号:机器之心(AlmostHuman2014),微信个人号:zhaoyunfeng1984
本内容为作者独立观点,不代表虎嗅立场。未经允许不得转载,授权事宜请联系 hezuo@huxiu.com
如对本稿件有异议或投诉,请联系tougao@huxiu.com
打开虎嗅APP,查看全文
频道:
健康
支持一下
赞赏
0人已赞赏
分享至:
3
大 家 都 在 看
开发数字大脑:人类已经阻止不了谷歌X实验室了
杨刀不出Q
05:20
#再见,2021
重磅!达摩院发布2022十大科技趋势(下)
阿里达摩院扫地僧
谷歌正在如何复制人类大脑?
虎嗅
AI“入侵”生物医药史:从暴力破解到Transformer模型三部曲
硅谷101
我们如何突破机器智能和人类智能的边界?
追问Nextquestion
DeepMind创始人专访:十年内出现AGI?
机器之心
DeepMind副总裁:AlphaFold的成功,做对了什么?
新智元
2022,机器学习领域还有哪些潜力趋势?
机器之心
脑科学与AI模型,如何交叉并进?
中国工程院院刊
AI规模定律:为什么Scaling Law如此重要?
奇绩创坛
10年6亿欧元,“欧洲人脑计划”成败几何?
NaturePortfolio©
13:48
#大佬访谈
对话先临三维副总裁:技术入云塑造3D视觉行业新模式
大咖说小编
04:43
#高新技术流
国产脑机接口开源平台发布,中国脑机产业迎来催化剂
万大叔
12:33
#AI有多智能
AI时代的统计学,有多智能?
复旦管院
14:20
#高新技术流
AI能成为医生吗?
虎学研究
27:58
思创力中国出海意见领袖论坛上线
钱德虎
13:10
#AI有多智能
2023年科技界热度之王:AI大模型的崛起与影响
万大叔
08:30
#AI有多智能
实验室里的新冠之战,靠生物计算决胜?
花狸胡说
25:27
#AI有多智能
越来越卷的人工智能,未来发展方向究竟在哪儿?
老石谈芯
10:20
#AI有多智能
如何让药物研发者拥有“上帝视角”?
Eva的科技生活
大 家 都 在 搜
OpenAI
AI
俄乌冲突
奢侈品
婚纱
投资
创投
贫困
科技创新
APP内打开
好的内容,值得赞赏
您的赞赏金额会直接进入作者的虎嗅账号
自定义
支付:
元
匿名赞赏
支付