当用户使用时,一定是带有要解决的问题过来的,以完成一份产品分析为例,在传统搜索产品中完整的链条大概是这样:
根据用户意图复杂度的不同,一定会经历上述过程3-6个环节,以及极端情况下无搜索结果,问题无法解决的情况。
由于互联网行业多年的蓬勃发展和积累,以及数量庞大的用户参与内容建设的过程中,无结果的情况比较少了,但在一些较垂直的领域依然是对体验影响较大的问题,例如作者经常搜索人因工程与交互设计交叉领域相关的问题,很多时候都找不到答案。
就像用户体验的基础是能解决问题一样,搜索产品的体验基础是有答案。
传统的搜索产品,由于其原理是先收录千亿数量级的网页,当用户搜索时进行匹配,所以只能在有答案的这部分场景下解决问题,且只能在上述“需求从产生到解决的过程”中2-3个环节中发挥作用。
面对无结果的问题,其实出现了不少优秀的解法和产品。例如百度做了提问产品,面对搜索结果需要用户二次整合、答案质量差等问题,也有最佳答案、赞同数等设计。
甚至传统搜索产品也很清楚自己只能解决上述完整流程中部分环节,也在向“搜索结果直接解决问题”这个方向努力,例如在百度中搜索“2024年法定假日”,搜索结果页面的第一条信息就可以直接解决用户的问题:
这种方案已经无需用户从结果列表中做选择再点击打开,但是这种做法一是需要人工识别场景做特殊处理,二是只能直接解决简单需求。三是与一些广告和商业化的场景天然有矛盾(例如搜索优酷,可能第一个结果“必须”是爱奇艺),所以整体上对用户体验的提升很有限。
AI搜索产品由于其原理是使用预训练的大模型生成内容,所以在无结果这部分长尾需求中体验很好 ,而AI搜索产品最大的优势,则是在解决一个需求的完整流程中覆盖了更多环节,并用AI技术代替一部分人脑的工作,向All in one方向的体验迈进了一步。
详细列举AI搜索产品的体验优势如下: